5 research outputs found

    Catheter Localization Utilizing a Sensor-Enabled Guidewire: Design of a Proof-of-Concept System

    Get PDF
    The purpose of this thesis project was to develop a proof-of-concept system for tracking the tip of a catheter without an embedded electromagnetic sensor by utilizing a sensor enabled guidewire. The motivation for the project was a reduction fluoroscopy radiation dose for clinicians in the interventional cardiology lab and the extension of navigation technology to be used with a wider variety of interventional devices through the implementation of expanded capabilities of the Abbott MediGuide system. The focus of the project was on the development of a proof-of-concept system capable of using an external device to track relative guidewire and catheter motion and apply that to a calculated position in the vasculature. The research conducted covered multiple disciplines from mechanical design to software algorithms. A prototype system was developed that functions alongside the MediGuide system to provide a three dimensional depiction of catheter location and a measurement of the relative linear displacement separating the distal tip of the guidewire and the distal tip of the catheter. The system consists of an electromechanical device to measure relative motion and software to communicate with the device, interpret recorded guidewire position data into a representative trajectory, and display the results to the user. The hardware and software components of the project were evaluated to determine accuracy and precision. The prototype device was determined to be accurate to 0.7±0.03% of total displacement. In a simulated use procedure the device was determined to be accurate to 1.4±0.53mm. The software algorithms to generate a simulated guidewire path were evaluated and tuned to generate the best response to the data sets available. In summary, the work performed here shows the possibility of implementing a device and software system that can provide localization information to the operator about the catheters used in an interventional procedure without the need for a sensor in the catheter

    Elliptic anisotropy measurement of the f0_0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

    No full text
    International audienceDespite the f0_0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark (qqˉ\mathrm{q\bar{q}}) meson, a tetraquark (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}}) exotic state, a kaon-antikaon (KKˉ\mathrm{K\bar{K}}) molecule, or a quark-antiquark-gluon (qqˉg\mathrm{q\bar{q}g}) hybrid. This paper reports strong evidence that the f0_0(980) state is an ordinary qqˉ\mathrm{q\bar{q}} meson, inferred from the scaling of elliptic anisotropies (v2v_2) with the number of constituent quarks (nqn_\mathrm{q}), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0_0(980) state is reconstructed via its dominant decay channel f0_0(980) \toπ+π\pi^+\pi^-, in proton-lead collisions recorded by the CMS experiment at the LHC, and its v2v_2 is measured as a function of transverse momentum (pTp_\mathrm{T}). It is found that the nqn_q = 2 (qqˉ\mathrm{q\bar{q}} state) hypothesis is favored over nqn_q = 4 (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}} or KKˉ\mathrm{K\bar{K}} states) by 7.7, 6.3, or 3.1 standard deviations in the pTp_\mathrm{T}<\lt 10, 8, or 6 GeV/cc ranges, respectively, and over nqn_\mathrm{q} = 3 (qqˉg\mathrm{q\bar{q}g} hybrid state) by 3.5 standard deviations in the pTp_\mathrm{T}<\lt 8 GeV/cc range. This result represents the first determination of the quark content of the f0_0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates

    Elliptic anisotropy measurement of the f0_0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

    No full text
    International audienceDespite the f0_0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark (qqˉ\mathrm{q\bar{q}}) meson, a tetraquark (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}}) exotic state, a kaon-antikaon (KKˉ\mathrm{K\bar{K}}) molecule, or a quark-antiquark-gluon (qqˉg\mathrm{q\bar{q}g}) hybrid. This paper reports strong evidence that the f0_0(980) state is an ordinary qqˉ\mathrm{q\bar{q}} meson, inferred from the scaling of elliptic anisotropies (v2v_2) with the number of constituent quarks (nqn_\mathrm{q}), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0_0(980) state is reconstructed via its dominant decay channel f0_0(980) \toπ+π\pi^+\pi^-, in proton-lead collisions recorded by the CMS experiment at the LHC, and its v2v_2 is measured as a function of transverse momentum (pTp_\mathrm{T}). It is found that the nqn_q = 2 (qqˉ\mathrm{q\bar{q}} state) hypothesis is favored over nqn_q = 4 (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}} or KKˉ\mathrm{K\bar{K}} states) by 7.7, 6.3, or 3.1 standard deviations in the pTp_\mathrm{T}<\lt 10, 8, or 6 GeV/cc ranges, respectively, and over nqn_\mathrm{q} = 3 (qqˉg\mathrm{q\bar{q}g} hybrid state) by 3.5 standard deviations in the pTp_\mathrm{T}<\lt 8 GeV/cc range. This result represents the first determination of the quark content of the f0_0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates

    Elliptic anisotropy measurement of the f0_0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

    No full text
    International audienceDespite the f0_0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark (qqˉ\mathrm{q\bar{q}}) meson, a tetraquark (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}}) exotic state, a kaon-antikaon (KKˉ\mathrm{K\bar{K}}) molecule, or a quark-antiquark-gluon (qqˉg\mathrm{q\bar{q}g}) hybrid. This paper reports strong evidence that the f0_0(980) state is an ordinary qqˉ\mathrm{q\bar{q}} meson, inferred from the scaling of elliptic anisotropies (v2v_2) with the number of constituent quarks (nqn_\mathrm{q}), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0_0(980) state is reconstructed via its dominant decay channel f0_0(980) \toπ+π\pi^+\pi^-, in proton-lead collisions recorded by the CMS experiment at the LHC, and its v2v_2 is measured as a function of transverse momentum (pTp_\mathrm{T}). It is found that the nqn_q = 2 (qqˉ\mathrm{q\bar{q}} state) hypothesis is favored over nqn_q = 4 (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}} or KKˉ\mathrm{K\bar{K}} states) by 7.7, 6.3, or 3.1 standard deviations in the pTp_\mathrm{T}<\lt 10, 8, or 6 GeV/cc ranges, respectively, and over nqn_\mathrm{q} = 3 (qqˉg\mathrm{q\bar{q}g} hybrid state) by 3.5 standard deviations in the pTp_\mathrm{T}<\lt 8 GeV/cc range. This result represents the first determination of the quark content of the f0_0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates

    Elliptic anisotropy measurement of the f0_0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

    No full text
    International audienceDespite the f0_0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark (qqˉ\mathrm{q\bar{q}}) meson, a tetraquark (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}}) exotic state, a kaon-antikaon (KKˉ\mathrm{K\bar{K}}) molecule, or a quark-antiquark-gluon (qqˉg\mathrm{q\bar{q}g}) hybrid. This paper reports strong evidence that the f0_0(980) state is an ordinary qqˉ\mathrm{q\bar{q}} meson, inferred from the scaling of elliptic anisotropies (v2v_2) with the number of constituent quarks (nqn_\mathrm{q}), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0_0(980) state is reconstructed via its dominant decay channel f0_0(980) \toπ+π\pi^+\pi^-, in proton-lead collisions recorded by the CMS experiment at the LHC, and its v2v_2 is measured as a function of transverse momentum (pTp_\mathrm{T}). It is found that the nqn_q = 2 (qqˉ\mathrm{q\bar{q}} state) hypothesis is favored over nqn_q = 4 (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}} or KKˉ\mathrm{K\bar{K}} states) by 7.7, 6.3, or 3.1 standard deviations in the pTp_\mathrm{T}<\lt 10, 8, or 6 GeV/cc ranges, respectively, and over nqn_\mathrm{q} = 3 (qqˉg\mathrm{q\bar{q}g} hybrid state) by 3.5 standard deviations in the pTp_\mathrm{T}<\lt 8 GeV/cc range. This result represents the first determination of the quark content of the f0_0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates
    corecore